skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Search for: All records

Creators/Authors contains: "Sanchez, Lucas A_H"

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. Poly(lactic acid) (PLA) offers a renewable and degradable alternative to petroleum-based plastic, but its mechanical properties are not ideal for many applications. Herein, we describe the synthesis and polymerization of oxo-3,8-dioxabicyclo[3.2.1]octane (ODO), a bio-derived bicyclic lactone, and show that copolymers of L-lactide (LA) with small amounts of ODO have improved mechanical properties over PLA. Homopolymerization of ODO to poly(oxo-3,8-dioxabicyclo[3.2.1]octane) (PODO) is optimized for both solution-phase, organocatalytic and melt-phase, metal-catalyzed conditions. In comparison to the monocyclic analog, ε-caprolactone (CL), ODO has a lower enthalpy of polymerization and faster rate of polymerization. PODO is an amorphous, elastomeric polyester that has a 90 °C higher Tg than poly(ε-caprolactone) (PCL). Statistical copolymerization of LA with small fractions of ODO yields tough and transparent thermoplastics that have over 12× elongation at break compared to native PLA, while maintaining Tg, Young’s modulus (E), and yield strength. Together, these results describe how the incorporation of the tetrahydrofuran ring alters polymerizability and the thermomechanical properties of the homopolymer and copolymer materials. 
    more » « less
    Free, publicly-accessible full text available February 12, 2026